文獻統整文章
經典文獻
- Lewis, P., Perez, E., Piktus, A., Petroni, F., Karpukhin, V., Goyal, N., ... & Kiela, D. (2020). Retrieval-augmented generation for knowledge-intensive nlp tasks. Advances in Neural Information Processing Systems, 33, 9459-9474. (https://proceedings.neurips.cc/paper/2020/file/6b493230205f780e1bc26945df7481e5-Paper.pdf)
- Gao, Y., Xiong, Y., Gao, X., Jia, K., Pan, J., Bi, Y., ... & Wang, H. (2023). Retrieval-augmented generation for large language models: A survey. arXiv preprint arXiv:2312.10997. (https://arxiv.org/pdf/2312.10997)
統整性文獻
- Li, H., Su, Y., Cai, D., Wang, Y., & Liu, L. (2022). A survey on retrieval-augmented text generation. arXiv preprint arXiv:2202.01110. (https://arxiv.org/pdf/2202.01110)
- 這篇論文整理了RAG的應用領域
- Dialogue Response Generation
- Machine Translation
- Other Tasks
- Huang, Y., & Huang, J. (2024). A Survey on Retrieval-Augmented Text Generation for Large Language Models. arXiv preprint arXiv:2404.10981. (https://arxiv.org/pdf/2404.10981)
- 這篇文章整理了RAG的相關技術
- Pre-Retrieval
- Indexing
- Query Manipulation
- Data Modification
- Retrieval
- Search & Ranking
- Retrieval Strategy
- Post-Retrieval
- Generation
- Evaluation in RAG
- Retrieval-based Aspect
- Generation-based Aspect
- Wu, S., Xiong, Y., Cui, Y., Wu, H., Chen, C., Yuan, Y., ... & Xue, C. J. (2024). Retrieval-Augmented Generation for Natural Language Processing: A Survey. arXiv preprint arXiv:2407.13193. (https://arxiv.org/pdf/2407.13193)
- 這篇文章整理了RAG的相關技術
- RETRIEVER
- Building the Retriever
- Querying the Retriever
- RETRIEVAL FUSIONS
- Query-based Fusion
- Logits-based Fusion
- Latent Fusion
- RAG TRAINING AND DATASTORE UPDATE
- RAG EVALUATION AND BENCHMARK
- TASKS
- Language Modeling
- Machine Translation
- Text Summarization
- Question Answering
- Information Extraction
- Text Classification
- Dialogue Systems
- Zhao, P., Zhang, H., Yu, Q., Wang, Z., Geng, Y., Fu, F., ... & Cui, B. (2024). Retrieval-augmented generation for ai-generated content: A survey. arXiv preprint arXiv:2402.19473. (https://arxiv.org/pdf/2402.19473)
- METHODOLOGIES
- RAG Foundations
- Query-based RAG
- Latent Representation-based RAG
- Logit-based RAG
- Speculative RAG
- RAG Enhancements
- Input Enhancement
- Retriever Enhancement
- Generator Enhancement
- Result Enhancement
- RAG Pipeline Enhancement
- APPLICATIONS
- RAG for Text
- RAG for Code
- RAG for Knowledge
- RAG for Image
- RAG for Video
- RAG for Audio
- RAG for 3D
- RAG for Science
- BENCHMARK
- Wang, X., Wang, Z., Gao, X., Zhang, F., Wu, Y., Xu, Z., ... & Huang, X. (2024). Searching for best practices in retrieval-augmented generation. arXiv preprint arXiv:2407.01219. (https://arxiv.org/pdf/2407.01219)
- 這個研究試圖在這麼多的RAG技術中找到最佳組合
- 在Retrieval Module中,Hybrid with HyDE的效果最好,但是,處理時間也是非常的長 (11.71秒),所以,要看系統的效率要求來取捨
- Reranking Module有其必要,其中MonoT5效果最好
- Repacking Module也是可以提升效能
- Summarization Module也是有其必要,一樣的,也會增加處理時間,但是,在context有限的情況下,Summarization Module是相當重要的
- Barnett, S., Kurniawan, S., Thudumu, S., Brannelly, Z., & Abdelrazek, M. (2024, April). Seven failure points when engineering a retrieval augmented generation system. In Proceedings of the IEEE/ACM 3rd International Conference on AI Engineering-Software Engineering for AI (pp. 194-199). (https://dl.acm.org/doi/pdf/10.1145/3644815.3644945)
Adaptive RAG
- Jeong, S., Baek, J., Cho, S., Hwang, S. J., & Park, J. C. (2024). Adaptive-rag: Learning to adapt retrieval-augmented large language models through question complexity. arXiv preprint arXiv:2403.14403. (https://arxiv.org/pdf/2403.14403)
Corrective RAG
- Yan, S. Q., Gu, J. C., Zhu, Y., & Ling, Z. H. (2024). Corrective retrieval augmented generation. arXiv preprint arXiv:2401.15884. (https://arxiv.org/pdf/2401.15884)
Self RAG
- Asai, A., Wu, Z., Wang, Y., Sil, A., & Hajishirzi, H. (2023). Self-rag: Self-reflective retrieval augmented generation. In NeurIPS 2023 Workshop on Instruction Tuning and Instruction Following. (https://openreview.net/pdf?id=jbNjgmE0OP)
- Asai, A., Wu, Z., Wang, Y., Sil, A., & Hajishirzi, H. (2023). Self-rag: Learning to retrieve, generate, and critique through self-reflection. arXiv preprint arXiv:2310.11511. (https://arxiv.org/pdf/2310.11511) (同樣內容放在arXiv上)
- Chan, C. M., Xu, C., Yuan, R., Luo, H., Xue, W., Guo, Y., & Fu, J. (2024). Rq-rag: Learning to refine queries for retrieval augmented generation. arXiv preprint arXiv:2404.00610. (https://arxiv.org/pdf/2404.00610) (Refine Query for Retrieval Augmented Generation, RQ-RAG)